

Bacterial Filtration Efficiency (BFE) Final Report

Test Article:

WLM2002

Purchase Order:

WL201906-1121T

Study Number:

1253866-S01

Study Received Date:

26 Dec 2019

Testing Facility:

Nelson Laboratories, LLC

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s):

Standard Test Protocol (STP) Number: STP0004 Rev 18

Deviation(s): None

Summary: The BFE test is performed to determine the filtration efficiency of test articles by comparing the bacterial control counts upstream of the test article to the bacterial counts downstream. A suspension of Staphylococcus aureus was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained at 1.7 - 3.0 x 10³ colony forming units (CFU) with a mean particle size (MPS) of 3.0 ± 0.3 µm. The aerosols were drawn through a sixstage, viable particle, Andersen sampler for collection. This test method complies with ASTM F2101-19 and EN 14683:2019, Annex B.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side: Inside

BFE Test Area: ~40 cm²

BFE Flow Rate: 28.3 Liters per minute (L/min)

Conditioning Parameters: $85 \pm 5\%$ relative humidity (RH) and 21 ± 5 °C for a minimum of 4 hours

Test Article Dimensions: ~174 mm x ~154 mm

Positive Control Average: 1.8 x 10³ CFU

Negative Monitor Count: <1 CFU

MPS: 3.1 µm

Study Director

Janelle R. Bentz, M.S.

Study Completion Date

sales@nelsonlabs.com

FRT0004-0001 Rev 22

Results:

Test Article Number	Percent BFE (%)
1	>99.9ª
2	>99.9 ^a
3	>99.9 ^a
4	>99.9 ^a
5	>99.9 ^a

^a There were no detected colonies on any of the Andersen sampler plates for this test article.

The filtration efficiency percentages were calculated using the following equation:

$$\% BFE = \frac{C - T}{C} \times 100$$

C = Positive control average

T = Plate count total recovered downstream of the test article Note: The plate count total is available upon request

sales@nelsonlabs.com

Sponsor: Celine Huang Hubei Wanli Protective Products Co., Ltd Yuanshi, Ganhe Xiantao, Hubei, 433000 CHINA

Latex Particle Challenge Final Report

Test Article: WLM2002

Purchase Order: WL201906-1121T

Study Number: 1253865-S01

Study Received Date:

26 Dec 2019

Testing Facility:

Nelson Laboratories, LLC

6280 S. Redwood Rd.

Test Procedure(s):

Salt Lake City, UT 84123 U.S.A.

Deviation(s):

Standard Test Protocol (STP) Number: STP0005 Rev 07

None

Summary: This procedure was performed to evaluate the non-viable particle filtration efficiency (PFE) of the test article. Monodispersed polystyrene latex spheres (PSL) were nebulized (atomized), dried, and passed through the test article. The particles that passed through the test article were enumerated using a laser particle counter.

Three one-minute counts were performed, with the test article in the system, and the results averaged. Three one-minute control counts were performed, without a test article in the system, before and after each test article and the counts were averaged. Control counts were performed to determine the average number of particles delivered to the test article. The filtration efficiency was calculated using the average number of particles penetrating the test article compared to the average of the control values.

The procedure employed the basic particle filtration method described in ASTM F2299, with some exceptions; notably the procedure incorporated a non-neutralized challenge. In real use, particles carry a charge, thus this challenge represents a more natural state. The non-neutralized aerosol is also specified in the FDA guidance document on surgical face masks. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side: Inside

Area Tested: 91.5 cm²

Particle Size: 0.1 µm

Laboratory Conditions: 20°C, 24% relative humidity (RH) at 0951; 20°C, 24% RH at 1242

Average Filtration Efficiency: 99.920%

Standard Deviation: 0.0358

Study Director

Janelle R. Bentz, M.S.

Study Completion Date

sales@nelsonlabs.com

FRT0005-0001 Rev 6

Results:

Test Article Number	Average Test Article Counts	Average Control Counts	Filtration Efficiency (%)
1	9	12,401	99.927
2	7	13,042	99.949
3	17	13,496	99.87
4	14	13,570	99.90
5	6	13,926	99.957

801-290-7500

Synthetic Blood Penetration Resistance Final Report

Test Article: WLM2002

Purchase Order: WL201906-0920

Study Number: 1225963-S01

Study Received Date: 26 Sep 2019

Testing Facility: Nelson Laboratories, LLC

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s): Standard Test Protocol (STP) Number: STP0012 Rev 09

Deviation(s): None

Summary: This procedure was performed to evaluate surgical facemasks and other types of protective clothing materials designed to protect against fluid penetration. The purpose of this procedure is to simulate an arterial spray and evaluate the effectiveness of the test article in protecting the user from possible exposure to blood and other body fluids. The distance from the target area surface to the tip of the cannula is 30.5 cm. A test volume of 2 mL of synthetic blood was employed using the targeting plate method.

This test method was designed to comply with ASTM F1862 and ISO 22609 (as referenced in EN 14683:2019 and AS4381:2015) with the following exception: ISO 22609 requires testing to be performed in an environment with a temperature of 21 ± 5°C and a relative humidity of 85 ± 10%. Instead, testing was performed at ambient conditions within one minute of removal from the environmental chamber held at those parameters.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Number of Test Articles Tested:

Number of Test Articles Passed: 30

Test Side: Outside

Pre-Conditioning: Minimum of 4 hours at 21 ± 5°C and 85 ± 5% relative humidity (RH)

Test Conditions: 20.6°C and 23% RH (Units 1-16)

22.1°C and 21% RH (Units 17-32)

Study Director

sales@nelsonlabs.com

FRT0012-0002 Rev 12

Results: Per ASTM F1862 and ISO 22609, an acceptable quality limit of 4.0% is met for a normal single sampling plan when ≥29 of 32 test articles show passing results.

Test Pressure: 120 mmHg (16.0 kPa)

Test Date: 03 Oct 2019

Test A	rticle Number	Synthetic	Blood Penetration
1	-3, 5-16	N	one Seen
4		Yes	
	ressure: 120 mmHg (16.0 kP st Date: 07 Nov 2019	a)	
Test Article Number	Synthetic Blood Penetration	Test Article Number	Synthetic Blood Penetration
17-	27, 29-32	N	one Seen
	28		Yes

Differential Pressure (Delta P) Final Report

Test Article: SAMPLE ID: WLM2002

Purchase Order: WL201906-0920

Study Number: 1225964-S01

Study Received Date:

26 Sep 2019

Testing Facility: Nelson Laboratories, LLC

6280 S. Redwood Rd.

Salt Lake City, UT 84123 U.S.A.

Test Procedure(s):

Standard Test Protocol (STP) Number: STP0004 Rev 17

Deviation(s): None

Summary: The Delta P test is performed to determine the breathability of test articles by measuring the differential air pressure on either side of the test article using a manometer, at a constant flow rate. The Delta P test complies with EN 14683:2019, Annex C and ASTM F2100-19.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side: Inside

Delta P Flow Rate: 8 Liters per minute (L/min)

Conditioning Parameters: 85 ± 5% relative humidity (RH) and 21 ± 5°C for a minimum of 4 hours

Test Article Dimensions: ~176 mm x ~159 mm

Results:

Test Article Number	Delta P (mm H ₂ O/cm ²)	Delta P (Pa/cm²)
1	3.0	29.2
2	3.0	29.8
3	3.0	29.8
4	3.0	29.0
5	3.0	29.2

Janelle R. Bentz, M.S.

nelsonlabs.com

sales@nelsonlabs.com

FRT0004-0001 Rev 21

Page 1 of 1